首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4815篇
  免费   1249篇
  国内免费   2412篇
化学   4201篇
晶体学   237篇
力学   343篇
综合类   298篇
数学   679篇
物理学   2718篇
  2024年   8篇
  2023年   43篇
  2022年   152篇
  2021年   127篇
  2020年   125篇
  2019年   139篇
  2018年   133篇
  2017年   244篇
  2016年   143篇
  2015年   251篇
  2014年   268篇
  2013年   389篇
  2012年   372篇
  2011年   384篇
  2010年   428篇
  2009年   472篇
  2008年   543篇
  2007年   447篇
  2006年   491篇
  2005年   474篇
  2004年   330篇
  2003年   282篇
  2002年   266篇
  2001年   305篇
  2000年   330篇
  1999年   171篇
  1998年   114篇
  1997年   99篇
  1996年   87篇
  1995年   79篇
  1994年   95篇
  1993年   102篇
  1992年   77篇
  1991年   68篇
  1990年   64篇
  1989年   60篇
  1988年   53篇
  1987年   40篇
  1986年   52篇
  1985年   34篇
  1984年   36篇
  1983年   21篇
  1982年   19篇
  1981年   14篇
  1980年   5篇
  1979年   9篇
  1978年   8篇
  1977年   4篇
  1971年   3篇
  1965年   5篇
排序方式: 共有8476条查询结果,搜索用时 17 毫秒
81.
Wenjie SHEN 《物理化学学报》2019,35(11):1173-1174
<正>催化剂电子结构与反应活性的关联是催化理论发展的关键科学问题之一,也是精准设计和调控催化材料结构的科学基础1–5。过渡金属表面d带能量(d-band center),可定性描述金属表面与反应物分子的相互作用过程6,7。吸附物种的吸附热或速控步骤的反应热的变化,反映了吸附质与催化剂表面之间结合能的变化7,8,作为标识反应速  相似文献   
82.
小麦是我国战略性储藏粮食品种,但小麦易受霉菌感染而发生霉变,影响其食用安全。加强小麦有害霉菌侵染程度的早期检测是控制其危害的需要措施。然而,现有的平板计数和荧光染色等检测方法,普遍存在前处理繁杂、时效性差等不足。故此,拟运用阵列式光纤光谱仪结合化学计量学方法,建立霉变小麦的实时在线检测方法,并为进一步开发粮食品质与安全在线检测装备提供参考。小麦样品经辐照灭菌后分别接种五种谷物中常见有害霉菌:串珠镰刀菌83227、层出镰刀菌195647、雪腐镰刀菌3.503、寄生曲霉3.3950和赭曲霉3.3486,并置于28 ℃和85%相对湿度环境中储藏7 d以加速霉变。在样品储藏的第0,1,3,5和7 d,运用阵列式光纤光谱仪和漫反射探头在线采集样品的漫反射特征光谱,并依据国标平板计数法测定样品菌落总数水平。光谱采集步骤为:在线检测平台上,设置样品运动速度0.15 m·s-1和光谱仪积分时间20 ms,采集波段为600~1 600 nm,重复测量3次。然后,首先对小麦原始光谱进行平滑、多元散射校正和导数变换等预处理以消除光谱噪音;随后,运用主成分分析(PCA)对受不同霉变程度(储藏阶段)的小麦样品进行区分;最后,利用线性判别分析(LDA)和偏最小二乘回归分析(PLSR)建立小麦有害霉菌侵染程度的定性定量分析模型。小麦在储藏期内经历未霉变、开始霉变和严重霉变三个阶段。原始和二阶微分光谱显示霉菌侵染引起小麦光谱特征发生显著改变,PCA结果表明不同储藏阶段(霉变程度)小麦样品存在一定分离趋势。利用前十个主成分得分建立的LDA判别模型,对不同霉变程度小麦样品的识别率达90.0%以上。结果表明:小麦样品菌落总数的PLSR定量预测模型的预测决定系数(R2p)为0.859 2,预测均方根误差(RMSEP)为0.401 Log CFU·g-1,相对分析偏差(RPD)达2.65。应用阵列式光纤光谱仪结合计量学方法在线评估小麦霉变具有一定可行性。下一步研究中,应扩大样品量,补充自然霉变及受更多代表性霉菌侵染的小麦样品,以不断增强模型的鲁棒性和方法的适用性。  相似文献   
83.
84.
Wenjie SHEN 《物理化学学报》2017,33(12):2323-2324
正无机膜分离是环境、能源等领域的一项关键技术,对于解决人类可持续发展相关的许多重大问题都有重要意义,而提高膜分离效率则是该技术的关键所在。原则上,降低膜厚可提高通量,但同时会引起膜的机械性能和选择性变差等一系列问题。纳米材料制备技术及功能调控为构筑新型高  相似文献   
85.
基于解释结构模型的大学生就业影响因素分析   总被引:1,自引:0,他引:1  
针对大学生就业率低的问题,构建大学生就业评价指标体系,利用解释结构模型的实用化方法对大学生就业影响因素进行了分析,并构建大学生就业影响因素的解释结构模型.根据解释结构模型层次化处理结果,分析各个因素之间的联系,将大学生就业影响因素分为四个层次,明确大学生就业影响因素的层次结构关系,找出导致大学生就业率低的最直接因素和最根本因素.  相似文献   
86.
沈跃跃  廖洋  毛卉  马骏  赵仕林 《分析试验室》2014,(12):1389-1391
建立了浊点萃取-火焰原子吸收光谱法测定4种消食类中草药中Pb含量的方法。以双硫腙为络合剂、非离子表面活性剂聚乙二醇辛基苯基醚(Triton X-100)为萃取剂,采用浊点萃取-火焰原子吸收光谱法联用,测定4种消食类中草药中Pb的含量,探讨溶液p H、表面活性剂用量、络合剂用量、平衡温度、平衡时间、干扰离子等条件对浊点萃取率的影响。最佳条件下,富集倍数为21倍,方法的检出限为0.16μg/L,校准曲线相关系数为0.9995;RSD≤1.7%(n=11),回收率在96.5%~98.1%之间。方法已用于4种消食类中草药中Pb的测定。  相似文献   
87.
采用Knorr吡咯合成法,以乙酰乙酸乙酯和亚硝酸钠为原料,在醋酸和锌粉作用下采用“一锅法”得到2,4-二甲基吡咯-3,5-二羧酸二乙酯。本实验涉及到控温、回流、重结晶、熔点测定、红外光谱及核磁共振等实验操作和分析检测方法。该实验原料简单易得、产物收率高,结合波谱解析方法,可以培养和提高学生合成实验的能力,加强学生对杂环合成和波谱解析的理解与分析。  相似文献   
88.
采用薄膜分散法合成磷脂微囊,根据胶粒的双电层理论,通过在微囊中加入氯化锰、氯化钙和氯化镁电解质溶液,使微囊处于相对稳定的状态.研究发现加入氯化锰和氯化钙溶液,微囊胶体的粒径没有明显的变化,但加入一定浓度氯化镁溶液,其粒径明显变大.为了进一步增加磷脂微囊稳定性,将氯化锰、氯化钙、氯化镁磷脂微囊胶体分别与海藻酸钠(SA)溶液混合.结果表明,氯化镁与SA几乎不能形成水凝胶,氯化钙与SA形成水凝胶能力强于氯化锰.微囊胶体溶液中的磷脂酰丝氨酸(PS)可以与Ca~(2+)和Mg~(2+)键合形成PS-Ca~(2+)和PS-Mg~(2+),但不能与Mn~(2+)键合形成PS-Mn~(2+).对氯化钙磷脂微囊与海藻酸钠合成的复合水凝胶的形貌、溶胀率及细胞毒性进行了表征,结果表明,氯化钙与SA形成的水凝胶可以捕获胶体中磷脂微囊,且形貌规整,结构稳定,无细胞毒性.  相似文献   
89.
采用分子动力学方法,模拟了不同加载速度、不同温度下单晶ZnO、TiO_2纳米线的拉伸破坏过程.通过模拟结果,对比、分析了两种单晶金属氧化物纳米线拉伸力学特性的差异.研究表明,1)ZnO纳米线的断裂机制为:表面微裂纹-微孔-微裂纹与微孔贯穿-断裂,而TiO_2纳米线的断裂机制为:局部屈服-颈缩-断裂;2)TiO_2纳米线的承载能力优于ZnO纳米线,而承受变形的能力劣于ZnO纳米线;3)温度较低的情况下,纳米线的抗拉性能较好;加载速度越高,纳米线的抗载性能越好,而抗变形能力越差.  相似文献   
90.
生物质焦油模拟物重整制取富氢气体实验研究   总被引:1,自引:0,他引:1  
以流化床作为反应器,进行生物质焦油模拟物(苯)催化重整制取富氢气体的实验研究,主要探究实验温度(780℃~900℃)、水蒸气/焦油模拟物质量比S/T (3.0~6.0)、床高(5.0cm~20.0cm)和床料(催化剂)对焦油模拟物重整制取富氢气体过程的影响。实验结果表明,焦油模拟物重整制取富氢气体的理想操作工况分别是温度为860℃~900℃,S/T 值为5.0,床层高度为15.0cm~20.0cm;通过比较,在上述理想操作条件下,合成的碱土金属催化剂(20CaAl)具有较好的催化活性,而其改性后的SCaFeNiAl催化剂具有更好的活性。在SCaFeNiAl作用下,焦油模拟物重整过程的活化能为58.87kJ/mol,指前因子为1.36×107h-1,且获得较好的实验效果,H2体积分数为67.28%,H2产率为303.50g/kg-tar,焦油模拟物转化率为95.93%,总气体产率为5.05m3/kg-tar。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号